
A
Tentative
User
and



Reference
Manual



for
TclMotif

1.0



Jean-
Dominique
Gascuel,
iMAGIS/
IMAG,
Grenoble,

France



Jean-
Dominique.
Gascuel@imag.

fr
Jan

Newmarch,



University
of
Canberra,
Australia

jan@pandonia.



canberra.
edu.au

04/20/21



Introduction
TclMotif,

alias
Tm, is

1



a
binding
of the
Tcl
languageFor
more
information

1



on Tcl
and
Tk,
see
the
very
neat

1



book
written
by
their
author,
(An
Introduction

1



To Tcl
and
Tk, J.
Ousterout,
Addison-
Wesley,
1994)

1



to the
OSF/
Motif
widgets.
Tcl is
an
interpreted

1



language
originally
intended
for
use as
a
command

1



language
for
other
applications.
It has
been
used

1



for
that,
but
has
also
become
useful

1



as a
language
in its
own
right.

Tcl has
been

1



extended
by a set of
widgets
called Tk.
The Tk
widgetsare
not based

1



on the X
toolkit
intrinsics,
but are
builtabove
Xlib. They
allow an

1



easy way
of writing
X Window
applications.

The
standard
set of

1



widgets in
the X
world is
now the
OSF/Motif
set. This
forms a

1



large set of
widgets,
and these
have been
through a
large
amount of

1



development
over the
last five
years. Use
of this set
is
sometimes

1



a
requirement
by
business,
and other
widgetsets
try to

1



conform to
them in
appearance
and
behavior.
Furthermore,
you are

1



sometimes
faced with
toolkits
that use X
toolkit-
based
widgets. In

1



this case,
you have
to use a X
toolkit
compatible
interface
builder.

1



Tm
allows the
programmer
to use the
OSF/Motif
widgets
instead of

1



the Tk
widgets
from Tcl
programs.
This
increases
programmer

1



choices,
and allows
comparison
of the
features of
both Tcl
and the Tk/

1



OSF/Motif
style of
widget
programming.
The
binding
gives the

1



usefull
subset of
the OSF/
Motif
widgets,
accessible
throughthe

1



simple
interpreted
Tcl
language.

Acknowledgments

1



Tm is
based on
Tk for the
style of
widget
programming.
This was

1



because it
provides a
good
model, but
it also
allows the
Tcl

1



programmer
to move
relatively
easily
betweenTk
and OSF/
Motif

1



programming.
An
alternative
style of
binding to
OSF/Motif
is used in

1



the WKSH
system,
which
performs a
similarsort
of role for
the Korn

1



Shell. An
intermediate
style is
provided
by the
Wafe X
toolkit-

1



based
frontend
based on
Tcl.

As Ijm
trying to

1



understand
Tm in
deep, I
started to
insert my
own notes
in the user

1



manual
provided
by Jan
Newmarch.
As time is
going, this
notes

1



becomes
more and
more
important,
and I
decided
that they

1



may end-
up in a
usefull
user and
reference
manual for
Tm. They

1



are just my
own
interpretation
of the
Scriptures.

1



Reading
this
manual
The first
section,

1



Getting
Started,
might be
sufficient
for
programmers
very

1



familiar
both with
OSF/Motif
and Tcl.
Tcl
beginners
should

1



start by
reading the
Ousterout
book
defining
Tcl 7.

1



The
second
part,
starting at
section
2 Basics,is
a

1



description
of all the
basics
OSF/Motif
concepts,
intented
for OSF/

1



Motif
beginners.

The
last part of
this
manual,

1



starting
from
section ?
have been
written to
be a full
reference

1



manual of
Tm, with
meaningfull
examples,
all
supported
resources,

1



default
values, ...

Finally,
the index
page index
should

1



provide an
extensive
and easy
crossreference
of all
supported
features.

1



1
Getting
Started
Tcl/OSF/
Motif

1



programs
may be run
by the Mo-
at (MOtif
And Tcl)
interpreter.
When

1



called with
no
arguments
it reads Tcl
commands
from

1



standard
input.
When
called by

moat

1



file-
name

it reads Tcl
commands
from
file-

1



name,
executes
them and
then enters
the Moat
event loop.
This is

1



similar to
the Tk
iwishj and
theconcept
was
borrowed
from there.

1



Depending
on your
shell
interpreter,
you will
probably
be able to

1



run Tclm
OSF/Motif
programs
as stand
alone
programs.
IfyourMo-

1



at
interpreter
is installed
in /usr/
local,
make this
the first

1



line of
your
executable
program :

[Sorry.
Ignored \

1



begintclmode
... \

endtclmode]

1.1 A

1



simple
example
The
following
example is

1



in the
programs
directory
as
progEG.
Thetypical
structureof

1



aOSF/Mo-
tifprogram
is that the
top-level
object is a
mainWindow.
This holds

1



a menu
bar, and a
container
objectsuch
as a form
or a
rowColumn

1



which in
turn holds
the rest of
the
application
objects. So
a

1



mainWindow
with a list
and some
buttons in
a form
would be
created by

1



[Sorry.
Ignored \
begintclmode
... \

endtclmode]

1



The
xmForm
acts as
what is
called the
kworkWindowl
of the

1



mainWindow.
This
resource
would be
set by

[Sorry.
Ignored \

1



begintclmode
... \

endtclmode]
Values
would also
be set into

1



the list and
buttons:

[Sorry.
Ignored \
begintclmode

1



... \
endtclmode]

Geometry
would be
set for the
form, to

1



put the
objects in
their
correct
relation to
each other.
Suppose

1



this is the
list on the
left, with
the two
buttons
one under
the other

1



on the
right:

[Sorry.
Ignored \
begintclmode

1



... \
endtclmode]

Once
evrything
has been
correctly

1



setup, we
can tell
OSF/Motif
to manage
all the
widgets,so
that they

1



will be
shown on
screen :

[Sorry.
Ignored \
begintclmode

1



... \
endtclmode]

The
behaviour
of our
application

1



would be
set by
callback
functions :

[Sorry.
Ignored \

1



begintclmode
... \

endtclmode]
And
finally,
windows

1



are created
and the
main event
loop is
entered:

[Sorry.
Ignored \

1



begintclmode
... \

endtclmode]
Once
entered in
the main

1



event loop,
the
application
is really
running :
widgetsare
created,

1



displayed,
and
manipulated
accordingly
to user
events that
trigger the

1



associated
callbacks.

1.2
What
next ?

1



Thou shall
read this
manual !

Tm
resource
names

1



stick to
usualOSF/
Motifname
with a
leading -
replacing
the XmN

1



prefix. The
Tm
constants
are
specified
by their
OSF/Motif

1



name,
withoutthe
Xm?
prefix,
either in
upper or
lower case.

1



2
Basics
OSF/Motif

use a
hierarchy
of

1



sub-
windows
to
create
interface
elements,
such

1



as
menu
item,
push
button
or text
entry

1



fields.
In the
X
toolkit
and
OSF/
Motif

1



jargon,
they
are
called
kwidgetsl
Widget
stands

1



for
window
objects.
.
Widgets
are
just

1



those
visual
objects
that
can be
seen
on the

1



screen,
or
interacted
width
by the
mouse
or

1



keyboard.
They
are
organized
in a
hierarchy,
with

1



the
application
itself
forming
the its
root.

1



Programming
a graphic
user
interface
mainly
consists of
the

1



following
steps :

� Creating
all
the
widgets
you

1



needs,
in a
suitable
hierarchy.

� Configuring
colors,
sizes,

1



alignments,
fonts,
...
In
OSF/
Mo-
tif,

1



widget
get
their
configuration
options
from
so

1



called
resources.
These
resources
may
be
set

1



on
a
per
widget
basis
or
on

1



a
per
widget
class
basis
(e.
g.

1



"all
push
buttons
should
have
red
background")

1



.
Furthermore,
OSF/
Mo-
tif
provides
inheritance

1



between
widget
classes
(for
instance,
push
button

1



have
a
background
color
resource,
because
they

1



inherit
its
existance
(but
not
its
value)

1



from
Label,
which
inherits
it
from
Primitive,

1



which
inherits
it
from
Core)
.

1



Usually,
applications
provide
defaults
resources
for
widget

1



classes,
and
each
user
modify
some
of

1



them
on
a
per
session
basis
(file

1



~/
.
Xdefaults)
.

� Programming
your
interface

1



to
react
to
user
inputs :
what
function

1



should
be
called
when
the
save
button

1



is
pushed
?
In
OSF/
Mo-
tif

1



jargon,
you
add
kcallbacksl
to
widgets.
A

1



call
back
is a
fragment
of
Tcl
code

1



which
is
executed
on
a
dedicated
event

1



(for
instance,
execute
puts
stdout
"Hello
World"

1



when
the
mouse
button
1 is
released
over

1



the
kpush me"
button)
.

The
following
sections

1



will detail
all this
concepts.

2.1

1



Widget
Names

1



Tcl is a
string
based
language
(the only
data type is
string),and

1



widget are
organized
in a
hierarchical
structure.
To
accommodate

1



this, the
naming of
objects
within this
hierarchy
is similar
to the

1



kabsolute
path
namesl of
Unix files
with a i.j
replacing
the i/j of

1



Unix. The
application
itself is
known as
i.j. A
Form in
the

1



application
may be
known as
i.
form1j.A
Label in
this form

1



may be i.
form1.
okLabelj,
and so on.

Note
that X
toolkit

1



requires
that i.j can
only have
one child
(except for
dialogs,
which are

1



not
mapped
inside their
parents).
This
naming
convention

1



is the same
as in Tk.

2.2
Widget

1



creation
commands
Widgets
belong to
classes,

1



such as
Label,
xmPushButton
or List. For
each class
there is a
creation

1



command
which
takes the
pathname
of the
object as
first

1



argument
with
optional
further
arguments:

1



creationCommand
widgetName
?
managed?

resourceList

1



where :
creationCommand

is
the
class

1



of
the
widget
your
are
creating.
Basically,

1



all
the
OSF/
Mo-
tif
Xm-
Create-

1



SomeWidget
()
calls
should
be
binded
toa

1



xmSomeWidget
Mo-
at
command.
The
extensive
list

1



of
currently
supported
creation
command
is

1



given
below.

widgetName

the
full

1



path
name
of
the
new
widget.
Note

1



that
this
specify
both
the
parent
widget

1



(which
should
already
exists)
,
and
the

1



name
of
the
new
child.

managed

1



Before
a
widget
can
be
displayed,

1



it
must
be
brought
under
the
geometry

1



control
of
its
parent
(similar
to
placing

1



a
Tk
widget)
.
This
can
be

1



done
by
the
manageChild
widget
method,
or

1



by
using
the
managed
mainidxentrymanaged
35=
1236=

1



1237=
1238=
1264=
1291=
1293=
1295=
12

1



argument
at
creation
time.
If
present,
this

1



option
should
be
the
first
one.
A

1



widget
might
be
managed
but
unmaped,
in

1



which
case
it is
invisible
(see
-
mapedWhenManaged,

1



page rsrc_Core)
.
The
main
use
of
knot

1



yet
managed
widget"
are
menus
(when
they

1



are
not
visible)
,
and
sub-
widgets

1



which
will
resize
to
an
unknown
dimension

1



at
the
time
of
creation
of

1



their
parents.

resourceList

1


