A
Tentative
User
and

Reference
Manual

for
TclMotif
1.0

Jean-
Dominique
Gascuel,
iIMAGIY
IMAG,
Grenoble,

France

Jean-
Domi ni que.
Gascuel @ nag.
fr

Jan
Newmarch,

University

of

Canberra,
Australia

j an@andoni a.

canberr a.
edu. au

04/20/21

Introduction

TclMotif,
dias
Tm,is

a

binding

of the

Tcl
Farguage
more
information

on Tcl
and
Tk,

the

very
neat

book
written

by

their

author,

(An
Introduction

To Tcl
and

Tk, J.
Qusterout,
Addison-
Wesley,
1994)

to the
OSF/
Motif
widgets.
Tclis

an
interpreted

language
originaly
intended
for

use as

a
command

language

for

other
applications.
It has

been

used

for
that,
but

has
aso
become
useful

asa
language
inits
own
right.
Tcl has
been

extended

by a set of
widgets

caled Tk.
The Tk
widgetsare
not based

on the X
toolkit

intrinsics,
but are
builtabove
Xlib. They
dlow an

easy way
of writing
X Window
applications.
The
standard
Set of

widgets in
the X
world is
now the
OSF/Motif
set. This
forms a

large set of
widgets,
and these
have been
through a
large
amount of

development
over the
last five
years. Use
of this set
is
sometimes

a
requirement
by

business,
and other
widget sets
try to

conformto
them in
appearance
and
behavior.
Furthermore,
you are

sometimes
faced with
toolkits
that use X
toolkit-
based
widgets. In

this case,
you have
to use a X
toolkit
compatible
interface
builder.

m
dlows the
programmer
to use the
OSF/Motif
widgets
instead of

the Tk
widgets
from Tcl
programs.
This
increases
programmer

choices,
and allows
comparison
of the
features of
both Tcl
and the Tk/

OSF/Motif
style of
widget
programming.
The

binding

gives the

usefull
subset of
the OSF/
Motif
widgets,
accessible
throughthe

simple
interpreted
Tcl
language.

Acknowledgments

Tm is
based on
Tk for the
style of
widget
programming.
This was

because it
provides a
good
model, but
it aso
alows the
Tcl

programmer
to move
relatively
easily
betweenTk
and OSF/
Motif

programming.
An
aternative
style of
binding to
OSF/Motif

is used in

the WK SH
S/Sterny
which
performs a
similarsort
of role for
the Korn

Shell. An
intermediate
style s
provided

by the
Wafe X
toolkit-

based
frontend
based on
Tcl.

As ljm
trying to

understand
Tm in
deep, I
started to
insert my
own notes
in the user

manual
provided
by Jan
Newmarch.
As time is
going, this
notes

becomes
more and
more
important,
and I
decided
that they

may end-
up in a
usefull

user and
reference
manual for
Tm. They

are just my
own
interpretation
of the
Scriptures.

Reading
this
manual

The first
section,

Getting
Started,
might be
sufficient

for
programmers
very

familiar
both with
OSF/Motif
and Tcl.
Tcl
beginners
should

start by
readingthe
Ousterout
book
defining
Tcl 7.

The
second
part,
starting at
section
2 Basics,is
a

description
of dl the
basics

OSF/Motif
concepts,
intented

for OSF/

Motif
beginners.

The
last part of
this
manual,

starting
from
section ?
have been
written to
be a full
reference

manua of
Tm, with
meaningfull
examples,
all
supported
resources,

default
values, ...

Finally,
the index
page index
should

provide an
extensive

and easy
crossreference
of al
supported
features.

1
Getting
Started

Tcl/OSF/
Motif

programs
may berun
by the Mo-
at (MOotif
And Tcl)
interpreter.
When

calledwith
no
arguments
itreadsTcl
commands
from

standard
input.
When
called by

moat

fil e-
nane
itreadsTcl
commands
from
file-

nane,
executes
them and
then enters
the Moat
eventloop.
This is

similar to
the Tk
iwishj and
theconcept
was

borrowed
from there.

Depending
on your
shell
interpreter,
you will
probably
be able to

run Tclm
OSF/Motif
programs
as stand
aone

programs.
Ifyour Mo-

at
interpreter
isinstalled
in /usr/
| ocal ,
make this
the first

line of
your
executable
program :
[Sorry.
Ignored \

begi nt cl node
oo\
endt cl node]

1.1 A

simple
example

The
following
exampleis

in the
programs
directory
as

pr ogEG
Thetypical
structureof

aOSF/Mo-

tif program

is that the
top-level
object is a
mainWindow.
This holds

a menu
bar, and a
container

objectsuch
as a form
or a
rowColumn

which in
turn holds
the rest of
the
application
objects. So
a

mainWindow
with a list
and some
buttons in
a form
would be
created by

[Sorry.
Ignored \
begi nt cl node

endfélnnde]

The
XmFor m
acts as
what is
caled the
kworkWindowl
of the

mainWindow.
This
resource
would be
set by

[Sorry.
Ignored \

begi nt cl node

oo\
endt cl node]

Values

would also

be set into

thelist and
buttons:
[Sorry.
Ignored \
begi nt cl node

o\
endt cl node]
Geometry
would be
set for the
form, to

put the
objects in
their
correct
relation to
each other.
Suppose

this is the
list on the
left, with
the two
buttons

one under
the other

on the
right:
[Sorry.
Ignored \
begi nt cl node

oo\
endt cl node]
Once
evrything
has been
correctly

setup, we
can tell
OSF/Motif
to manage
all the
widgets, so
that they

will be
shown on
screen :
[Sorry.
Ignored \
begi nt cl node

oo\
endt cl node]

The

behaviour

of our

application

would be
set by
callback
functions :
[Sorry.
Ignored \

begi nt cl node

oo\
endt cl node]

And

finaly,

windows

are created
and the
main event
loop is
entered:
[Sorry.
Ignored \

begi nt cl node

oo\
endt cl node]

Once

entered in

the main

eventloop,
the
application
is redly
running
widgetsare
created,

displayed,
and

mani pul ated
accordingly
to user
events that
trigger the

associated
callbacks.

1.2

What
next ?

Thou shall
read this
manual !

m
resource
names

stick to
usual OSF/
Motifname
with a
leading -
replacing
the XmN

prefix. The
Tm
constants
are
specified
by their
OSF/Motif

name,

withoutthe
Xnf?
prefix,
either in
upper or

lower case.

2

Basics

OSF/Motif
usea
hierarchy
of

sub-
windows
to

create
interface
elements,
such

menu
item,
push
button
or text
entry

fields.
Inthe
X
toolkit
and
OSF/
Motif

jargon,
they

are
caled
kwidgetsl
Widget
stands

for
window
objects.
Wi dgets

just

those
visual
objects
that
can be

on the

screen,
or
interacted
width

by the
mouse

or

keyboard.
They

are
organized
ina
hierarchy,
with

the
application
itself
forming
theits
root.

Programming
a graphic
user
interface
mainly
consists of
the

following
steps :
O Creating
all
the
widgets
you

needs,

ina

suitable

hierarchy.
Configuring

colors,

Sizes,

alignments,
fonts,

In

OSF/

Mo-
tif,

widget

get

their
configuration
options

from

S0

called
resources.
These
resources
may

be

set

on

per
widget
basis
or

on

per
widget
class
basis
(e

"all

push

buttons
should

have

red
background")

Furthermore,
OSF/

Mo-

tif

provides
inheritance

between
widget
classes
(for
instance,
push
button

have

a
background
color
resource,
because

they

inherit

its
existance
(but

not

its

value)

from
Labdl,
which
inherits

it

from
Primitive,

which
inherits
it

from
Core)

Usually,
applications
provide
defaults
resources
for

widget

classes,
and
each
user
modify
some
of

them
on

per
session
basis
(file

~/
Xdef aul ts)

Programming
your
interface

to

react

to

user
inputs :
what
function

should
be
called
when
the
save
button

is
pushed
?

In
OSF/
Mo-
tif

jargon,
you

add
kcallbackd
to

widgets.

A

call

back

isa
fragment
of

Tcl

code

which

is
executed
on

dedicated
event

(for
instance,
execute
put s
st dout
"Hell o
Wor | d”

when
the
mouse
button
lis
released
over

the
kpush me"
button)

The
following
sections

will detail
al this
concepts.

2.1

Widget
Names

Tclisa
string
based
language
(the only
datatypeis
string),and

widget are
organized

in a
hierarchica
structure.

To
accommodate

this, the
naming of
objects

within this
hierarchy
is similar
to the

kabsolute
path
names of
Unix files
with a i.
replacing
the i/j of

Unix. The
application
itself is
known as
i.j. A
Form in
the

application
may be
known as

i.
fornlj.A
Labe in
this form

may be i.
forml.
okLabel j,
and so on.
Note
that X
toolkit

requires

thati. j can
only have
one child
(except for
dialogs,

which are

not
mapped
insidetheir
parents).
This
naming
convention

isthesame
asin Tk.

2.2
Widget

creation

commands

Widgets
belong to
classes,

such as
Labdl,
xmPushButton
orList. For
each class
there is a
creation

command
which
takes the
pathname
of the
object as
first

argument
with
optional
further
arguments:

creationCommand
widgetName
2

managed?
resourceList

where:
creationCommand

is
the
class

of

the
widget
your

are
creating.
Basicdlly,

al
the
OSF/
Mo-
tif

Creat e-

SomeW dget
0

cals

should

be

binded

toa

xnSomeW dget
Mo-

at

command.

The

extensive

list

of
currently
supported
creation
command
is

given
below.
widgetName

the
full

path
name
of

the
new
widget.
Note

that
this
specify
both
the
parent
widget

(which
should

aready

exists)

the

name

of

the

new

child.
managed

Before

widget
can

be
displayed,

it

must

be
brought
under
the
geometry

control
of

its
parent
(similar
to
placing

widget)

This
can
be

done

by

the

manageChi | d
widget

method,

or

by

using

the

managed

mai nidxentrymanaged
35=

1236=

1237=
1238=
1264=
1291=
1293=
1295=

argument
at
creation
time.

If
present,
this

option
should
be

the
first
one.

widget
might

managed
but
unmaped,

which
case

itis
invisible
(see

mapedWhenManaged,

pagersrc_Core)
The

main

use

of
knot

yet
managed
widget"
are
menus
(when

they

are

not
visible)
and
sub-
widgets

which
will

resize

to

an
unknown
dimension

at

the
time

of
creation
of

their
parents.
resourcelList

